The Bipartite Swapping Trick on Graph Homomorphisms
نویسندگان
چکیده
منابع مشابه
The Bipartite Swapping Trick on Graph Homomorphisms
We provide an upper bound to the number of graph homomorphisms from G to H, where H is a fixed graph with certain properties, and G varies over all N -vertex, d-regular graphs. This result generalizes a recently resolved conjecture of Alon and Kahn on the number of independent sets. We build on the work of Galvin and Tetali, who studied the number of graph homomorphisms from G to H when G is bi...
متن کاملOn Weighted Graph Homomorphisms
For given graphs G and H , let |Hom(G,H)| denote the set of graph homomorphisms from G to H . We show that for any finite, n-regular, bipartite graph G and any finite graph H (perhaps with loops), |Hom(G,H)| is maximum when G is a disjoint union of Kn,n’s. This generalizes a result of J. Kahn on the number of independent sets in a regular bipartite graph. We also give the asymptotics of the log...
متن کاملGraph Powers and Graph Homomorphisms
In this paper we investigate some basic properties of fractional powers. In this regard, we show that for any rational number 1 ≤ 2r+1 2s+1 < og(G), G 2r+1 2s+1 −→ H if and only if G −→ H− 2s+1 2r+1 . Also, for two rational numbers 2r+1 2s+1 < 2p+1 2q+1 and a non-bipartite graph G, we show that G 2r+1 2s+1 < G 2p+1 2q+1 . In the sequel, we introduce an equivalent definition for circular chromat...
متن کاملCounting Graph Homomorphisms
3 Connection matrices 9 3.1 The connection matrix of a graph parameter . . . . . . . . . . . . . . . . . . . . 9 3.2 The rank of connection matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.3 Connection matrices of homomorphisms . . . . . . . . . . . . . . . . . . . . . . . 12 3.4 The exact rank of connection matrices for homomorphisms . . . . . . . . . . . . 13 3.5 Extensions...
متن کاملGraph homomorphisms III: Models
Following the last talk on graph homomorphisms, we continue to discuss some examples of graph homomorphisms. But this time we will focus on some models, that is, the homomorphism G → H for the graph H with fixed weights. The main reference is Section 1 in [2].
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Discrete Mathematics
سال: 2011
ISSN: 0895-4801,1095-7146
DOI: 10.1137/100800415